Surprises found in Mars rock touched by Curiosity

The first Martian rock NASA’s Curiosity rover has reached out to touch presents a more varied composition than expected from previous missions. The rock also resembles some unusual rocks from Earth’s interior.The rover team used two instruments on Curiosity to…

The first Martian rock NASA’s Curiosity rover has reached out to touch presents a more varied composition than expected from previous missions. The rock also resembles some unusual rocks from Earth’s interior.The rover team used two instruments on Curiosity to study the chemical makeup of the football-size rock called “Jake Matijevic” (matt-EE-oh-vick) The results support some surprising recent measurements and provide an example of why identifying rocks’ composition is such a major emphasis of the mission. Rock compositions tell stories about unseen environments and planetary processes.”This rock is a close match in chemical composition to an unusual but well-known type of igneous rock found in many volcanic provinces on Earth,” said Edward Stolper of the California Institute of Technology in Pasadena, who is a Curiosity co-investigator. “With only one Martian rock of this type, it is difficult to know whether the same processes were involved, but it is a reasonable place to start thinking about its origin.”On Earth, rocks with composition like the Jake rock typically come from processes in the planet’s mantle beneath the crust, from crystallization of relatively water-rich magma at elevated pressure.Jake was the first rock analyzed by the rover’s arm-mounted Alpha Particle X-Ray Spectrometer (APXS) instrument and about the thirtieth rock examined by the Chemistry and Camera (ChemCam) instrument. Two penny-size spots on Jake were analyzed Sept. 22 by the rover’s improved and faster version of earlier APXS devices on all previous Mars rovers, which have examined hundreds of rocks. That information has provided scientists a library of comparisons for what Curiosity sees.”Jake is kind of an odd Martian rock,” said APXS Principal Investigator Ralf Gellert of the University of Guelph in Ontario, Canada. “It’s high in elements consistent with the mineral feldspar, and low in magnesium and iron.”ChemCam found unique compositions at each of 14 target points on the rock, hitting different mineral grains within it.”ChemCam had been seeing compositions suggestive of feldspar since August, and we’re getting closer to confirming that now with APXS data, although there are additional tests to be done,” said ChemCam Principal Investigator Roger Wiens (WEENS) of Los Alamos National Laboratory in New Mexico.Examination of Jake included the first comparison on Mars between APXS results and results from checking the same rock with ChemCam, which shoots laser pulses from the top of the rover’s mast.

The wealth of information from the two instruments checking chemical elements in the same rock is just a preview. Curiosity also carries analytical laboratories inside the rover to provide other composition information about powder samples from rocks and soil. The mission is progressing toward getting the first soil sample into those analytical instruments during a “sol,” or Martian day.”Yestersol, we used Curiosity’s first perfectly scooped sample for cleaning the interior surfaces of our 150-micron sample-processing chambers. It’s our version of a Martian carwash,” said Chris Roumeliotis (room-eel-ee-OH-tiss), lead turret rover planner at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.Before proceeding, the team carefully studied the material for scooping at a sandy patch called “Rocknest,” where Curiosity is spending about three weeks.”That first sample was perfect, just the right particle-size distribution,” said JPL’s Luther Beegle, Curiosity sampling-system scientist. “We had a lot of steps to be sure it was safe to go through with the scooping and cleaning.”Following the work at Rocknest, the rover team plans to drive Curiosity about 100 yards eastward and select a rock in that area as the first target for using the drill.During a two-year prime mission, researchers will use Curiosity’s 10 instruments to assess whether the study area ever has offered environmental conditions favorable for microbial life. JPL, a division of Caltech, manages the project and built Curiosity.

Advertisement

Headlines
Synchrotrons play role in Nobel prize research
October 12, 2012 12:04 pm |
by Glenn Roberts Jr., SLAC

Scientists observe quantum effects in cold chemistry
October 12, 2012 10:39 am

Surprises found in Mars rock touched by Curiosity
October 12, 2012 10:18 am

Scientists discover that shape matters in DNA nanoparticle therapy
October 12, 2012 10:03 am

View More Headlines

New Products
Sample Prep Kit
October 12, 2012 7:54 am

Liquid Handling Pipetting System
October 9, 2012 11:17 am

Ductless Chemical Workstations
October 9, 2012 11:13 am

Fume Hoods
October 9, 2012 11:09 am

View More Product Releases

Advertisement

Strange But TrueEditor’s Picks
Scientists observe quantum effects in cold chemistry
October 12, 2012 10:39 am

Surprises found in Mars rock touched by Curiosity
October 12, 2012 10:18 am

‘Invisibility’ could be a key to better electronics
October 12, 2012 8:35 am |
by David L. Chandler, MIT News Office

Spider silk’s hidden talents may produce eco-friendly optics
October 11, 2012 12:25 pm

View More Strange But True

Synchrotrons play role in Nobel prize research
October 12, 2012 12:04 pm |
by Glenn Roberts Jr., SLAC

Scientists observe quantum effects in cold chemistry
October 12, 2012 10:44 am

Scientists observe quantum effects in cold chemistry
October 12, 2012 10:39 am

‘Invisibility’ could be a key to better electronics
October 12, 2012 8:35 am |
by David L. Chandler, MIT News Office

View More Editor’s Picks

Trending

Advertisement

Advertisement

Advertisement

Advertisement

 

Connect With Us

Newsletters

Advantage Business Media © Copyright 2012 Advantage Business Media

Top Stories and HeadlinesEVERY DAY!

FREE Email Newsletter

View Sample »